On Description of Acceleration of Spinless Electrons in Law of Heat Conduction a capite ad calcem in Temperature
نویسندگان
چکیده
In the chemical potential Stokes-Einstein formulation, when acceleration of the molecule is accounted for, a law of diffusion a capite ad calcem concentration results. In cartesian one-dimensional heat conduction in semi-infinite coordinates, the governing equation for temperature or concentration was solved for by the method of Laplace transforms. The results are in terms of the modified Bessel composite function in space and time of the first order and first kind. This is when τ > X. For X > τ the solution is in terms of the Bessel composite function in space and time of the first order and first kind. The wave temperature is a decaying exponential in time when X = τ. An approximate expression for dimensionless temperature was obtained by expanding the binomial series in the exponent in the Laplace domain and after neglecting fourthand higher-order terms before inversion from the Laplace domain. The Fourier model, the damped wave model and the a capite ad calcem in temperature/concentration model solutions are compared side by side in the form of a graph. The a capite ad calcem model solution is seen to undergo the convex to concave transition sooner than the damped wave model. The results of the a capite ad calcem temperature model for distances further from the surface are closer to the Fourier model solution.
منابع مشابه
Parasitic Effect of Tube Wall Longitudinal Heat Conduction on Cryogenic Gas Temperature
Longitudinal heat conduction is an important parameter in the cryogenic field, especially in cryogenic heat exchangers. In the present work, the parasitic effect of tube wall longitudinal heat conduction on temperature measurement has been studied in cryogenic laminar hydrogen flow. The effects of various parameters such as wall cold end temperature, wall thermal conductivity, gas volumetric fl...
متن کاملInvestigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body
In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...
متن کاملMeshless analysis of casting process considering non-Fourier heat transfer
Casting is considered as a major manufacturing process. Thermal analysis of a solidifying medium is of great importance for appropriate design of casting processes. The conventional governing equation of a solidifying medium is based on the Fourier heat conduction law, which does not account for the phase-lag between the heat flux and the temperature gradient. In this paper, the concept of phas...
متن کاملThermoelastic Analysis of a Rectangular Plate with Nonhomogeneous Material Properties and Internal Heat Source
This article deals with the determination of temperature distribution, displacement and thermal stresses of a rectangular plate having nonhomogeneous material properties with internal heat generation. The plate is subjected to sectional heating. All the material properties except Poisson’s ratio and density are assumed to be given by a simple power law along x direction. Solution of the two-dim...
متن کاملThermoelastic Response of a Rotating Hollow Cylinder Based on Generalized Model with Higher Order Derivatives and Phase-Lags
Generalized thermoelastic models have been developed with the aim of eliminating the contradiction in the infinite velocity of heat propagation inherent in the classical dynamical coupled thermoelasticity theory. In these generalized models, the basic equations include thermal relaxation times and they are of hyperbolic type. Furthermore, Tzou established the dual-phase-lag heat conduction theo...
متن کامل